
AD-A243 024TRW Systems Engineering & !ll]lllllll|[
Development Division .

TRW.TS.89-03 'VAF

Requirements Analysis for Large Ada Programs:
Lessons Learned on CCPDS-R

Charles Grauling 91-13774
December 1989 I IIIil1ilII lIII

* TRW Technology Series

ec iuioS-Series
iit"VV IechfloovS ies

W U hnI,, Series
I~ ' RW~eries

" A

A___ ogye Series



Acea~es' oa 1.t /_
Statement A per telecom . RA&I

Doris Richard ESD-PAM r
Hanscom AFB MA 01731-5000 ,

NWW 12/2/91 I.-" :10at !LAI

Requirements Analysis for Large Ada, Programs: - .. . .

Lessons Learned on CCPDS-R 3/ . . .

Charles Grauling 7'.
TRW Defense Systems Group

Redondo Beach, California . I

ABSTRACT implementation and capability demonstrations, and in-
cremental integration and formal requirement verifica-

This paper summarises the experiences of the soft- tion. The overall process is further described in [Royce
ware requirements team on the Command Center Pro- 19901 and [Springman 1989]. This paper will describe
cessing and Display System Replacement (CCPDS-R) TRW's experiences in the requirement analysis and pre-
program. The CCPDS-R program involves the devel- liminary design phases of the project.
opment of large amount of command and control soft-
ware while using a new approach to the entire software CCPDS-R SYSTEM and ITS
development process. The major challenges that the ARCHITECTURE
software requirements team faced include: performance
constraints, dealing with uncertainty in a fixed price de- Figure I illustrates the functional interfaces among
velopment environment, and incompatibility, of the re- the CCPDS-R subsystems and their primary external
quired deliverable documentation (as specified in DOD- interfaces. There are two deployments of the Common
STD-2167) with real project needs. Subsystem (labeled CMAFS and OPCC on the Figure)

The techniques included: a small team with good that consist of identical hardware and software com-
tools, concurrent software development, extensive pro- ponents. The primary function of the Common Subsys-
totyping and performance modeling, and DID tailoring. tems is to process the information received from sensors,
The focus of this paper is on the process, techniques and generate displays for local consoles, integrate the mis-
tools that supported the critical front end of a successful sile warning information with other manually entered
large scale Ada development program. data, and distribute this information to other command

centers. The other command centers receive and dis-
PROJECT BACKGROUND play this information by using a CCPDS-R Processing

and Display Subsystem (PDS). PDS is capable of re-
The Command Center Processing and Display Sys- ceiving and displaying direct sensor data and processed

tem Replacement (CCPDS-R) program is the missile data from the Common Subsystem. The SAC command
warning element of the new Integrated Attack Warn- center has additonal processing capability necessary to
ing/Attack Assessment (ITW&A) system architecture support its force management and force survival func-
developed by North American Aerospace Defense Com- tions. This capability necessitates a high bandwidth
mand/Air Force Space Command. link to the Common Subsystems, additional processing

The CCPDS-R program was awarded to TRW resources, and and SAC unique algorithm and display
Defense Systems Group in June 1987. It consists of software. The Common Subsystems are capable of mu-
three separate subsystems of which the first, identi- tual backup in the sense that either system can generate
fled as the Common Subsystem, is 24 months into de- the output messages to the other users, PDS, and SAC
velopment and has just completed Critical Design Re Subsystem.
view (CDR). The Common Subsystem includes approx- The scope of the CCPDS-R program includes the
imately 325,000 source lines of Ada with a development development, production, and installation of the three
schedule of 38 months. Characterized as a highly reli- subsystems as denoted by solid lines on Figure 1. This
able, real-time distributed system with a sophisticated paper will focus on the requirements analysis process
User Interface and stringent performance requirements, that was used to develop the Software Requirements
CCPDS-R Ada risks were originally a very serious con- Specifications (SRSs) for the Common subsystem. The
cern. formal software requirements analysis process does not

The CCPDS-R program is using a new software start until the system requirements and ADPE archi-
development process model that features concurrent re- tecture are defined. For the CCPDS-R project, this oc-
quirements analysis and software design, early software curred during the competitive procurement process that

9'1 10 22 075



I -- 1 I
I I I I

I SENSORS ICMAFS SUBSYSTE -- -

I - - OTHER I
-I USERS

I I

FUNCIONALOTHER IIWIC
WARNING WTH , .

INDICATORS '

I ! CMAFS
I ,ANMCC

OPCC SUBSYSTEM NMCC

L... SAC

IFUNCTIONAL PDS

SWITCH

r - - - -

I SACDIN - SAC SUBSYSTEM

CCPDS-R
EXTERNAL TO CCPDS-R

Figure 1: CCPDS-R Sytem Diagram

preceeded the award of the current Full Scale Develop- Reliability. CCPDS-R must continuously available
ment contract. The top level system requirements that and it must always produce valid results. The
drove the Common Subsystem's hardware and software high availability drove the hardware selection to
architecture prior to award of the current contract in- a distributed architecture with redundant process-
clude: ing resources. A very high mean time between

software induced system failures also is required

* Message processing throughput. The Common to meet system availability requirements. Explicit

Subsystem must be able to execute mission pro- data integrity and message accountability require-

cessing algorithms on each incoming sensor message ments were included in the CCPDS-R System Spec-

within tight constraints on both elapsed time from ification to ensure the validity of its outputs. A

message arrival to algorithm results availablity and resulting constraint on the software development

CPU processing load. These constraints primar- process is the necessity to include sufficient testing

ily affect algorithm design and the overall software to verify that both system and software reliablity

implementation approach. requirements are indeed satisfied.

e Interactive display performance. The information e Growth and flexibility. CCPDS-R's expected op-
content and requisite responsiveness of the interac- erational lifetime is more than 15 years. During
tive displays was specified. The exact design of the that time, the entire ITW&A system is expected
interactive displays was to be determined during to evolve. CCPDS-R will have to adapt to chang-
the full scale development phase. ing sensors, message sets, and display requirements.

2



In general there is a tradeoff between flexibility a TRW IR&D project whose objective was to use
and performance. The need to properly make that Ada to develop a reusable envirionment for imple-
tradeoff affected the requirements analysis and pre- menting Command and Control systems. Its ex-
liminary design process. istence as an early, stable component was crucial

to the success of the overall software development
The ADPE architecture for the Common Subsys process. NAS is completely reusable in the other

tern, in Figure 2, defines the execution environment for subsystems. See [Royce 19891 for a more detailed
the Common Subsystem Computer Software Configu- presentation of NAS and its capabilities.
ration Items (CSCI). All the hardware components are
commercial off the shelf products. The processors are Common System Services (SSV) CSC .
members of compatible family (DEC VAX) running the This CSCI provides top level subsystem control
VAX/VMS operating system. The main mission pro- logic ind related subsystem support functions in-
cessing element is a par of VAX 8800 processors. They cluding computer system operator interface, indi-
handle all external communication traffic (i.e., incoming cators and warning (I&W) display generation and
sensor messages and outgoing warning and assessment data entry, database management and distribution,
messages) via an external communication system (called data recording and reduction, and system moding
CSSR). There is a support processor (VAX 8350) that is and control.
used for internal test message injection and other non-
critical support functions. Each Warning System Op- Common Communications (CCO) CSCI. This
erator has a workstation that includes a dedicated pro- CSCI handles all external interfaces for the Com-
cessor (VAX 3200). This processor maintains a local mon Subsystem. It provides the processing re-
copy of the time critical database which is used to up- quired to implement the CSSR upper level com-
date interactive user displays. As a result, the interac- munication protocols, validate and reformat incom-
tive display request responsiveness is quite insensitive to ing messages, and route incoming messages inter-
the processing load caused by incoming sensor message nally within the Common Subsystem. It also per-
traffic. It is primarily sensitive to display complexity in forms equivalent processing for all outgoing Corn-
terms of the number of displayable graphic objects con- mon Subsysem generated messages. The primary
tained in the requested display. All processors on the reason for its status as a separate CSCI was to en-
network have access to a common disk pool through a sure encapsulation of initially unstable external in-
standard DEC software capability called "clustering". terface details such as message set definitions and
The DEC environment also includes DECNET software interface protocols.
which provides reliable processor to processor commu-
nication services. * Common Mission Processing (CMP) CSC. This

The software design team treated the suite of corn- CSCI performs the mission critical algorithms that
mercial hardware and software products as a single convert incoming sensor messages into displayable
loosely coupled multiprocessor. The developed software results that support decision making.
that executes on this processor system is organized into
six CSCIs. Test and Simulation (TAS) CSCI. This CSCI per-

forms the processing required to support all the test
* Network Architecture Services (NAS). This CSCI and exercise modes specified in the the CCPDS-R

performs general purpose processing functions re- System Specification. The operational CCPDS-R
quired to provide the loosely coupled multiproces- system is continually used in a test and exercise
sor ADPE framework for the implementation of mode in support of crew training and operational
the other CCPDS-R CSCIs. It performs intertask readiness. TAS provides the interactive scenario
communication, network management, and general generation and test control, and online message in-
purpose functions supporting: data recording, net- jection during a test or exercise scenario required
work status monitoring, system initialization, and to support all test and exercise operations.
reconfiguration. NAS hides processor and network
details from the other CCPDS-R CSCIs. It ef- o Common Display Coordination (DCO) CSCI.
fectively provides the general purpose "building This CSCI performs the user interaction and dis-
blocks" needed to implement realtime command play generation functions for the warning system
and control systems by defining abstract executable operator (WSO) position. It also had a headstart
objects (called application tasks and processes) and due to an IR&D project that had an objective to
the communication services required to use them. develop flexible display generation software tech-
The development of NAS was based on results of niques in Ada. This cSCI's CSCs execute primar-

3



SUJPPORT DISPLAY LAN ETnERNET BUSS 0 cX SNO

CP I
DtIt.AY

VAX ASAM ONA

am ~ PaOCSOR
O AIR CONTROL DCEIVIA DEPLAY

rn*Rl~ffrVoT 

0*

Figure~~~~~~~C 2:C o usse DEAcictur

ci SUS 0 - L DISMLAY

POCSiSOR woo obom u u r r
V*AISTAT=O

tern.

ME T ODOlaw CONOLES 0

COMPUTER OPERATOR DISPLAY OEVCES

Figure 2: Common Subsystem ADPE Architecture

ily in the VAX 3200 processors contained in the code that implements the interface are required. Like-
operator workstations. wise, required performance characteristics such as stor-

age allocations and timing requirements are by-products
of the software design process when multiple CSCls are

a P R StrR eSOFTWARE ENGINEERING executed within a single processor or multiprocessor sys-

METHODOLOGY tm
It was clear at the start of the CCPDS-R full scale

The CCPDS-R program is contractually required development phase that the SRSs would be "living" doc-

to use the documentation suite specified in DOD-STD- uments. The contract contained several planned sub-

2167 [DOD 1985]. This includes the development of missions of draft versions that were used by the Gov-

a Software Requirements Specification (SRS) in accor- erment to track the progress of the design process. hni-

dance with the content and format requirements speci- tially the SRSs contained the functional requirements

fied in DOD-STD-2167's Data Item Description (DID) necessary to drive the preliminary design process. The

for the SRS. In spite of its title, a DOD-STD-2167 com- SRSs evolved with the software design process and the

pliant SRS is not a pure software requirements docu- missing details were filled in by CDR as planned. The

ment. It certainly contains software requirements, but process that was used to produce the Common Subsys-

a DID compliant SRS must contain additional details tem SRSs consisted of the concurrent requirement anal-

that cannot be provided without first completing the ysis and software design analysis activities illustrated in

design of the software. CSCI to CSCI interface charac- Figure 3.

teristics which are more detailed than the Ada source The primary inputs to the CCPDS-R software en-

4



REQUIREMENTS ANALYSIS DESIGN ANALYSIS

SYSTEM REQUIREMENTS REQUI NT OAPREUMINAY

SOURCE DOCUMENTS AND ACING DESIG

* EXIS iNG SYSTEM :FUNCTIONAL CSCI TO CSCI
OCEXI ATION YSTEREQUIREMENTS INTERFACESCIDOCUMENTATION ALLOCATION

. ETERALICD HUMAN TECHNICAL

ENGINEERING INTERCHANGE

SPECIFICATION

*DRAFT SRSz u.t .

WORKING
GROUPI I

DELIVERABLEDOCUMENTS _ LORITHM 90TOTYPIN

" SRSS, Big DECVELOPMENT _P9 :

" DISPLAY INTERFACEDESIGN DOCUMENT USER PERFORMANCE
INTERFACE REQUIREMENTS

" SYSTEM DESIGN ALLOCATION

DESCRIPTION
DOCUMENT DELIVERABLEDOCUMENT DOCUMENT 14 ANNN

Figure 3: CCPDS-R Software Engineering Process

gineering process are the documents indicated on Fig- cluded the keyword "shall") was tagged with a unique
ure 3 that existed at award of contract. The word identifier and entered into a database. Each require-
'Replacement" in CCPDS-R refers to the fact that ment was then allocated to one or more Configuration
CCPDS-R is a replacement of an existing system. As Items (CI) and the allocation relationships were also
such, CCPDS-R has a system level requirement to gen- entered in the database. In this context, Ua require-
crate messages that are identical to those generated by ment is allocated to a CI" means that the SRS or Cl
the current system it that will replace. Hence, exist- development specification associated with the CI must
ing system specifications and Interface Control Docu- contain requirements that trace back to the allocated
ments (ICDs) are source documents for the CCPDS-R source requirement. We developed automated consis-
system requirements analysis process. These documents tency check procedures and reports based on this trace-
in conjunction with a stable CCPDS-R System Specifi- ability database. The first reports were simple sorts by
cation and draft SRSs that developed during the com- CI. They were used by SRS authors to ensure that their
petitive design phase adequately defined the system re- SRSs were complete with respect to requirement coy-
quirements baseline for the software design process that erage. Formal requirement traceability was included in
was about to start. the process from the start with the engineers responsi-

Requirements Allocation. The first step in the ble for generating the traceability relationship data. We

software engineering process was formal requirements had a full time traceability toolsmith and enforcer to

allocation and traceability database generation. The help ensure that all requirements were properly traced.

source documents were analysed sentence by sentence. With the functional requirements, performance
Each sentence that contained requirements (i.e., in- characteristics, and hardware architecture already de-

5



fined and contractually constrained, the only significant ity. A more detailed description of this activity is pro-
remaining degrees of freedom in the system design were vided by [Viceroy 1990]. The primary effect of the soft-
in the specific design of the message processing algo- ware design analysis activities on the SRS development
rithms and the warning system operator interface. The process was to substantiate the design details that go
program plan included Joint Government/Contractor into the SRSs and aid in focusing engineering resources
Working Groups to handle these critical system design on the difficult or critical design issues. Another useful
issues. The Working Groups' tasks were to design al- feature of this approach is that it allowed us to rationally
gorithms and displays that meet the System Specifica- design to performance constraints. The first versions of
tion's functional requirements within the performance the top level software architecture were optimized to
budgets imposed by the contract's hardware baseline, support integration. They had many small tasks with
The working groups ran in parallel in support of the simple interfaces. Bottlenecks and improperly function-
Human Engineering and Algorithm Development activ- ing components were easy to detect and isolate in this
ities indicated on Figure 3. The resulting display and al- environment. Once the system was integrated and all
gotithm des:6 ns were input to the prototyping activity, the obvious blunders corrected, the process of squeezing
In addition to the display designs, the human engineer- the software into the performance constraints involved
ing activity also produced user interface characteristics consolidating tasks to reduce communication costs and
requirements that were to be included in the SRSs for operating system overhead. This process tends to result
CSCIs that implement user interface software. These re- in a system that is more computer resource efficient at a
quirements were derived from military standard human cost of being harder to understand and maintain. The
engineering guidance documents. tradeoff between efficiency and other less measurable

The design analysis part of the process consists software quality attributes stops when the software fits

of three related activities: software preliminary design, into the performance constraints imposed by the system

prototyping, and performance modeling. Software pre- specification. This approach effectively settles in on an

liminary design on CCPDS-R could start earlier than optimal solution because it minimizes the amount of un-

usual because the requirements independent part (NAS) measurable software design quality attributes that are

had already been specified and prototyped prior to the expended to accomplish the measurable CPU efficiency

award of contract. The NAS capabilities needed to sup- requirements.

port the top level design were available and their inter- Document Production. It may seem unconven-
faces were stable. Likewise, a baseline software archi- tional to include document production as an engineering
tecture already existed as a by-product of the compet- activity as indicated on Figure 3. However, the contrac-
itive design phase. The inherent flexibility provided by tual data requirements were sufficiently difficult to man-
the NAS components and message based software al- age that we applied engineering talent ensure that they
lowed us to perform top down design and integration could be satisfied. There were five planned submissions
early in the process without fear of costly code break- of the Common Subsystem SRSs including one with the
age down stream. The software preliminary design was proposal, one prior to each of the major reviews: System
supported by benchmarking and prototyping of critical Requirements Review (SRR), Preliminary Design Re-
algorithms. In addition to the mission processing algo- view (PDR), Critical Design Review (CDR), and a final
rithms, we prototyped the software that performs inter authentication version following the Critical Design Re-
task communication, display generation, and time crit- view. In addition, the CCPDS-R contract requires nu-
ical database distribution. The prototyping provided merous other documents such as plans and procedures,
insight about performance bottlenecks and valuable ex- system description document, and DOD-STD-2167 soft-
perience about the processor resource demands of the ware design documentation. Many of these documents
commercial software components. are required to contain common information, or details

Performance Modeling. We supported the design that could be extracted mechanicaUy out of other doc-
process with independent performance modeling. The uments. We used a public domain text formatting pro-
performance model uses discrete system simulation to gram (IATEX) [Lamport 1985] as a basis for building an
maintain a prediction of processing resource usage and automated document production and maintenance sys-
system responsiveness. It uses a mixture of initial es- tem. We substantially reduced the manpower required
timates, software designer supplied line of code counts, to maintain consistency across CCPDS-R's large collec-
and empirically derived performance data obtained from tion of related documents by surrounding INTEX with
the prototyping activity. The fidelity of the model was command procedures and file management conventions
continually upgraded as design details emerged out of to develop this system. IATEjX is best described as a doe-
the preliminary design activity and empirical perfor- ument compiler. Our document authors generate source
mance data was accumulated by the prototyping activ- code written in the lATEX programming language. We

6



then build deliverable documents by compiling and link- the laser printer vendor. QDrive reads a lATEX DVI file
ing modular documentation components. We also ap- and converts the device independent representation into
ply familiar software design and database management the appropriate printer commands to produce the fi-
principles to the document production process. For ex- nal printable file. By embedding the appropriate IATEX
ample, we apply the principle of single point of con- commands in the source file, it is possible to instruct
trol by requiring that text which must appear in more QDrive to import a graphics file and scale it into a pre-
than one document (such as common general purpose determined space on a page. This paper was produced
descriptive material or interface characteristics) must be using the CCPDS-R document production system.
contained in individual lATEX source files and imported
into each using document. In this environment, docu-
ment production is more than just turning the paper-
work crank. The automated documentation techniques &AC 0MVMPN

are an essential component of the discipline that we use O I

to perform System Engineering.
The key to allowing the SRSs to evolve without

creating chaos is having the ability to produce and W OWM

maintain the documents efficiently while keeping track

of their relationship to the contractually binding Sys-
tem Specification. The documents must be available
throughout the requirements analysis and preliminary amp
design phase even though they are evolving in response
to system requirements interpretation and preliminary
design results. Our production and maintenance meth- ? ML,

ods permitted this. We used a combination of commer- "

cially available tools (document formatter and struc-
tured analysis tool) in conjunction with locally devel- Figure 4: Document Preparation System
oped utilities to provide an effective integrated docu-
ment production and requirements traceability environ- The lATEX language is extensible via a macro fa-
ment. The document production capability and require- cility. We used this extensibility feature to create many
ments traceability system are two separate systems that new abstract text objects to enhance the SRS creation
are linked by shared files. and production process. One such extension, the "re-

The document production system is illustrated in quirement" abstract text object, provided the link to
Figure 4. Document authors create INTEX source code the traceability system. These "requirement" objects
using the the text editor available on our host computer expand into the printed text as numbered "shall" (i.e.,
facility. This source code defines abstract text objects they look like this - shall[l]). The numbers are auto-
such as paragraphs, lists, floating figures and tables, matically assigned by lATEX to ensure that all require-
cross reference labels, etc. IUTEX also has fairly power- ments were uniquely labeled. In addition, ULTEX cap-
ful but difficult to use graphics capability that involves tures other information from the document context and
specifing a picture in Cartesian coordinates. This capa- writes it out to an auxilliay file. This other information
bility was used only by hard core computer programmer includes the automatically paragraph number and title,
types. Others use a commercially available PC-based and author entered source reference traceability infor-
graphics editor. After editing a source file, the user mation, and verification cross reference matrix informa-
runs the lATEX program. ITTFX calculates how the text tion. We then wrote a program to read this auxiliary
objects will look when they are typeset onto paper. It file and generate the lATEX source code which builds the
builds a device independent representation of each out- requirement traceability and verification cross reference
put page which is stores on a disk file (called a "DVI matrices that go in each SRS. This technique saves work
Files"). In addition, lATEX builds auxilliary files which and produces correct consistent results. We also use the
contain other information which is used to build front same auxilliary file to populate the requirements trace-
matter such as the table of contents and list of figures. ability database.
Drawing files created on the PC are down loaded to the Requirements Tracing. Figure 5 illustrates major
host computer and available for printing on the host components of the CCPDS-R requirements traceabil-
computer's laser printer or inclusion into a lATEX docu- ity sytem. The process started with manual require-
ment. Printed output is generated by running a printer ments allocation. To prepare for this step, we dissected
specific driver program, QDrive, that was provided by the system specification on a sentence by sentence basis

7



and entered each sentence and its address (i.e., para- ipants in the SRS development process include: System
graph number concatenated with its sentence number Engineers, Software Engineers, Testers, and Managers
concatenated with its list item identifier if the sen- from both the Contractor and Government communi-
tence contained a nested list) into a relational database. ties. Throughout the SRS evolution, period, they tend
This allowed us to use address strings as unique iden- to be treated as contracts among the various factions in-
tifiers for individual system requirements. The man- volved in their creation and use. As such, they become
ual requirement allocation step was accomplished by a focal point for conflicts and their resolution. As the
conducting a marathon meeting with all the CSCI au- system design process goes through different phases, the
thors to determine which CSCIs would be "responsible" different factions become more or less active in the pro-
for each of the system specification's verifiable require- cess. The best way to illustrate this point is to chronicle
ments. The decisions made in this way were entered what happened on CCPDS-R with each of the released
into the database and we could generate a report for SRS versions.
each CSCI author that contained the CSCI's subset ofrequirements to be traced. 1. SSR Version. The first draft SRSs focused on defin-

r armed with their allocated requirements ing the scope of processing requirements by at-
Properly the ihth heircallocaendineoriretentsetempting to resolve open system specification inter-

report, the SRS authors could then incorporate the pretation issues. Their primary function was tuto-
source reference traceability information in the SRSs as rial. They were used by the software developers as
they were created. This is the most natural way to design guidance. They also were used to commu-
capture source reference traceability information. The nicate system design progress to the Government
SRS author has the best knowledge of which system review team. They contained information that was
specification requirement(s) are the source of each SRS derived primarily from the system specification and
requirement during the process of the SRS ITFX source
code. Capturing that information at the time when the numerous Technicl Interchange Meetings (TIMs)
SRSs initially are created is the least painful way to do iy d users.te and om e isues.
it. This approach was initially devised a way of au-
tomating production of the source reference tracability 2. PDR Version. The primary feedback from the re-
table. A minor modification to the requirements trace view of the SSR version came from the Government
matrix utility shown in Figure 4 turned it into a Trace- review team and the software development team.
tbility Database Populator shown on Figure 5. This al- In general, the first version of the SRSs contained
lowed us to automatically capture the source reference too much design detail for the software developers
traceability information from the SRSs. It was easy to and not enough for the Government review team.
implement automated analysis of the consistency of the This was caused by the differences in their respec-
traced requirements against the allocated requirements. tive responsibilities. The developers are responsible
Error reports generated by the traceability analysis pro- for find a design solution that meets the functional
cess allowed us to uncover a variety of errors early in requirements within a performance budget. They
the process and provided confidence that we had indeed need design flexibility. Whenever the SRS spec-
covered all system specification requirements. ifies how to do something rather than what must

The validity of the process is still based entirely on be done, implementation flexibility is lost and it be-
engineering judgement. A computer program cannot comes harder to find a performance compliant solu-
assess the "correctness" of the either downward alloca- tion. The Government review team has a different
tion or upward traceability. However, the computer's responsibility. They are tasked with determining if
outstanding ability manage a large mass of traceability the emerging design will work. Early in the pro-
data without getting bored or making mistakes allowed cess, when design documentation and demonstra-
us to do a more thorough and accurate job. ble products were not yet available, the Govern-

ment team exhibited an enormous appetite for de-
PROBLEMS AND SOLUTIONS tail. Armed with a DID that can be interpreted as

requiring considerable design detail (such as CSCI

Varying role of the SAS. The primary purpose of to CSCI interface designs, error processing details,

the SRSs is to provide the software requirements base- internal timing and sising allocations), they exerted

line. They are initially used to resolve ambiguities in considerable pressure on us to augment the SRSs

the system requirements and/or clarify their interpre- with additional and more detailed requirements.

tation. Next they are used to drive the software design The most exaggerated example of this phennmenon
process. Ultimately the SRSs become the basis for the occurred in the human interface area. The DCO de-
software formal verification and acceptance. The partic- velopers wanted the SRS to specify required general

8



REQUIREMENTS

REQUIREMENTS

ALLOCATION

ANALSIS

TRCEBIITERPOT

REQUIREMENTS-A

TRACABIITY CC 4OAO

DATABASE

Figure 5: CCPDS-R Requirements T'aceability System

purpose capbilities that wc 'xld provide a suficiently play layout and their information content. After
flexible environment for implementing a To Be De- the PDR - rsion was issued, the software devel-
termined design for displays and user interaction, opera pressed on generating operational code, and
The Government review team felt that the user in- the incremental testing and verification process was
terface was an external interface. Therefore, func- started ESpringman 1989].
tion key hits, graphics picks, and user keyboard in-
puts were external inputs and it was necessary for 3. CDR Version By CDR, most of the operational sys-
the SRS to specify the exact processing required tern was built, informally tested and intergrated.
and resulting outputs for each type of user input. The CDR operational., demonstration was close
We resolved this conflict through a number of corn- eogtomeeting efrac eqieettn
promises. We generated an additional document, dicate that performance requirements will be satis-
the Display Interface Design Document (DIDD), fled through tuning and minor enhancements. The
that contained the desired clarifying details. We emphasis for the CDR version of the SRSs was to
added more requirements in the SRS which iden- modify them to enhance their usability as a basis
tified specific required displays by reference to the for formal selloff of the system. This involved re-
DIDD. This allowed us to stabilise the SRS while moving details that were now a source of confusion
letting the detailed design anc implementation pro-ancofitmngheesrsndhirevwr.
teed. Interactive display responsiveness is one of Incompatible perceptions and uses of the SRS
the most difficult requirements to design to be- gaateta oen ilawy euhpywt
case it in very sensitive to the details of the dis- the SRS and its contents. In real-world system de-

9

! ~ ~ WV ANIALIYSIIiS



velopment, requirements and design approaches evolve relative isolation. The developers were very comfortable
continuously. In general. Jhe CCPDS-R SRSs tracked with it. The smoothness and efficiency of the low level
that evolution. Initially they were design oriented with testing and integration verified that the basic approach
increasing imple,.,ntation constraining detail. Toward ws sound.
the end of the process, when the design had matured and This approach was not optimal from the formal
the SRS role was to be the tester's contract, implemen- testing and requirement verification perspective. The
tation detail was removed and replaced specific require- concept of treating subsystem internal CSCI to CSCI
ment definition language which was more suitable for interfaces as external interfaces in the same manner as
formal verification. The SRS development methodology real external interfaces (such as the incoming sensor
has to support requirement evolution and the changing message sets) simply didn't work. The information con-
role of the SRS within the overall development process. tent requirements contained in the SRSs mapped into
Our automated approach to document production and Ada record type specifications in the implementation.
maintenance provided this support. A variety of mechanisms for passing objects of a given

DI-MCCR-80025 Interpretation. The DOD- type among CSCIs were available to implement inter-
STD-2167 Data Item Description (DI-MCCR-80025) faces within the CCPDS-R software architecture. The
that specifies the format and content of the SRS. DI- choice of CSCI to CSCI information interchange mech-
MCCR-80025 is most appropriate for an embedded com- anism is an implementation decision based on perfor-
puter type of application where there is one CSCI run- mance tradeoffs. It doesn't belong in the SRS because
ning in one processor. CCPDS-R consists of multi- it might need to change any time prior to formal system
pie CSCIs coexisting on a loosely coupled multiproces- test. The formal testing community uses the SRS as a
sor system. The differences between the two environ- basis for test planning and test case design. It can't de-
ments cause some DI-MCCR-80025 requirements to be termine how to -'xplicitly verify interface requirements
inappropriate. A good example of this is DI-MCCR- if the SRSs don" contain the missing implementation
80025's requirements to specify CSCI to CSCI inter- detail.
faces in terms of low level details. In the CCPDS-R We tctealt with this issue by working out a common
ADPE environment, CSCI to CSCI interfaces are es- sense arritngement with the Government review team
sentially internal interfaces. They are implemented by to effectively conduct a proper requirements verifica-
using packages of Ada record type specifications that are tion process without arbitrarily constraining the design.
imported by components in the interfacing CSCIs. Most Rather than explicitly verifying the internal CSCI to
of the implementation details that DI-MCCR-80025 re- CSCI interfaces, we defined a new verification method
quires are irrelevant for Ada software development. Of called "lmplicit"verification. A requirement may be ver-
course, the information content of the interface in SRSs ified implicitly if there is a test case that verifies some
is important. We needed a DID that allowed the use other requirement(s) which could not have worked prop-
of abstract data types in interfaces. There were many erly had the implicit requirement not also been satis-
other examples of DI-MCCR-80025 specifics that were fled. This situation happens frequently in CCPDS-R
inappropriate for large scale Ada developments. We ne- with its functional CSCI partition and message based
gotiated with the Government review team to develop design approach. For example, a sensor message en-
a mutually agreeable "interpretation" of the DID re- ters the system gets validated and reformatted by one
quirements that made sense for CCPDS-R. DI-MCCR- CSCI that sends it to another CSCI for processing to
80025 has since been superseded by DOD-STD-2167A generate results that are displayable by another CSCI.
[DOD 1988]. The new DID is more appropriate for the The test case that verifies proper operation of this pro-
CCPDS-R environment. The modifications that we put cessing thread implicitly verifies that the pertinent in-
in our internal version of the DID were remarkably con- ternal CSCI to CSCI interfaces are working correctly.
sistent with the new DID. We could now finalize the SRS and generate valid test

CSCI Partition. The top level decomposition of plan and procedures without arbitrarily constraining
CCPDS-R into CSCIs done from the software develop- the implementation of CSCI to CSCI interfaces.
ment perspective. It achieved effective encapsulation of In retrospect, we effectively treated the entire col-
the important sytem attributes such as external inter- lection of CSCIs as if they were a single CSCI for re-
faces (including protocols, message sets and their in- quirement verification purposes. If we had had a single
formation content), mission algorithms, user interface CSCI for the entire Common Subsystem with the same
characteristics, and top level system control. It forced first level of decomposition into functions as the current
early defintion and configuration control on a few key in- CSCI set that we used, we would have generated less
ternal interfaces and data structures which subsequently paperwork and no loss in visibility or design control.
enabled the developers to work their design problems in We are about to restart the software requirements

10



analysis and preliminary design for the third CCPDS-R Engineering and Development Division's Management
subsytem (SAC). Based on Common Subsystem lessons commitment to follow through on a risky new technol-
learned, the SAC Subsystem will consist a single de- ogy insertion with strong support, the United States Air
veloped CSCI that executes under the VAX/VMS and Force Electronics System Division's courage and fore-
NAS. sight to allow us to use this new technology on a critical

program, and the entire CCPDS-AI Software and System

SUMMARY Engineering team. Explicit acknowledgements are due
to Don Andres, Joan Bebb, Chase Dane, Ron Louie, El-

The software engineering and preliminary design liott Henry, Tom Herman, Steve Patay, Walker Royce,
process was successful on CCPDS-R for the following Patti Shishido, Mike Springman, and Darrell Yocomress: whose day to day involvement and commitment have

made this process a success.
" We had a small team consisting of five senior en-

gineers built the SRSs for all three subsystems in- BIOGRAPHY
cluding document production. In the process, we
developed new ways of generating and managing Charles Grauling is the Software Chief Engineer
the software requirements that enhanced both pro- on the CCPDS-R Project. He received his BS in Electri-
ductivity and the quality of the products. cal Engineering from Cornell University in 1966, MS in

Electrical Engineering from the Massachusetts Institute*Concurrent software requirements analysis and de- ofTcnlgin18,adM inCmueSine
signwored ut ettr tan v- hd epeced.The of Technology in 1968, and MS in Computer Science

sinwoked ubterfothan a thad pete. uthe from the University of Southern California in 1972. He
eal pnterftomanda tt weed go u kof th has been responsible for software requirements analysis

early integration and prototyping helped us know and architecture design on the CCPDS-R project since
where to draw the line on algorithm and display 1984.
complexity. Moreover, the early implementation
allowed us to demonstrate operatinnal capabilities
tc the CCPDS-R user community. This provided REFERENCES
us with vaulable user feedback. It also gave the
Government a much better understanding of the [DOD 1985] DOD-STD-2167, Military Standard De-
state of the design than is possible with the pile fense System Software Development, 4 June 1985.
of documents and briefing charts that is normally [DOD 1988] DOD-STD-2167A Military Standard De-

available at design reviews. fense System Software Development, 29 February
1988.

" We tailored the DID so that it made sense for [Lamport 19851 Lamport, Leslie, "LATEX: A Docu-
CCPDS-1. Some tailoring was specifically included ment Preparation System", Addison-Wesley Pub-
in the contract. Additional DI-MCCR-80025 in- lishing Company, 1985
terpretation agreements during the system design [Royce 19891 Royce, W. E., "Reliable, Reusable Ada
activity prevented the need to include worthless in- Components For Constructing Large, Distributed
formation ir the documents solely to satisfy the Multi-task Networks: Network Architecture Services
DID. (NAS)", TRI-Ada Proceedings, Pittsbargh, October

1989.
" The CCPDS-R System Specification is an excellent [Royce 1990] Royce, W. E., "TRW's Process Model

document. We had only minor squabbles over its for Incremental Development of Large Software Sys-
interpretation. It provided detail (approximately tems", Submitted to 12th International Conference
2000 verifiable requirements) without imposing ar- on Engineering, Nice, France 1990.
bitrary design constraints. Concurrent software re- [Springman 1989] Springnian, M. C., "Incremental Soft-
quirement analysis and software development could ware Test Methodology for a Major Government
not have worked without the System Specification's Ada Project", TRI-Ada Proceedings, Pittsburgh, Oc-
stable requirements base. tober 1989.

[Viceroy 1990] Viceroy, J. A., uSystem Performance
Analysis with an Ada Process Model Development",

ACKNOWLEDGEMENTS Submitted to 12th International Conference on En-
gineering, Nice, France 1990.

The success of the CCPDS-R project to date is due
to multiple contributions including the TRW System

11


